Majorization and Spherical Functions
نویسندگان
چکیده
Abstract In this paper, we generalize a result of Cuttler, Greene, Skandera, and Sra that characterizes the majorization order on Young diagrams in terms nonnegative specializations Schur polynomials. More precisely, introduce generalized notion associated to an arbitrary crystallographic root system $\Phi $ show it admits natural characterization values spherical functions any Riemannian symmetric space with restricted .$ We also conjecture further generalization theorem Heckman–Opdam hypergeometric functions.
منابع مشابه
Linear Functions Preserving Multivariate and Directional Majorization
Let V and W be two real vector spaces and let &sim be a relation on both V and W. A linear function T : V → W is said to be a linear preserver (respectively strong linear preserver) of &sim if Tx &sim Ty whenever x &sim y (respectively Tx &sim Ty if and only if x &sim y). In this paper we characterize all linear functions T : M_{n,m} → M_{n,k} which preserve or strongly preserve multivariate an...
متن کاملIntegral Properties of Zonal Spherical Functions, Hypergeometric Functions and Invariant
Some integral properties of zonal spherical functions, hypergeometric functions and invariant polynomials are studied for real normed division algebras.
متن کاملMajorization theorem for convexifiable functions
In this paper we extend the majorization theorem from convex to covexifiable functions, in particular to smooth functions with Lipschitz derivative, twice continuously differentiable functions and analytic functions. AMS subject classifications: 26B25, 52A40, 26D15
متن کاملLinear Functions Preserving Sut-Majorization on RN
Suppose $textbf{M}_{n}$ is the vector space of all $n$-by-$n$ real matrices, and let $mathbb{R}^{n}$ be the set of all $n$-by-$1$ real vectors. A matrix $Rin textbf{M}_{n}$ is said to be $textit{row substochastic}$ if it has nonnegative entries and each row sum is at most $1$. For $x$, $y in mathbb{R}^{n}$, it is said that $x$ is $textit{sut-majorized}$ by $y$ (denoted by $ xprec_{sut} y$) if t...
متن کاملOperator Monotone Functions, Positive Definite Kernels and Majorization
Let f(t) be a real continuous function on an interval, and consider the operator function f(X) defined for Hermitian operators X. We will show that if f(X) is increasing w.r.t. the operator order, then for F (t) = ∫ f(t)dt the operator function F (X) is convex. Let h(t) and g(t) be C1 functions defined on an interval I. Suppose h(t) is non-decreasing and g(t) is increasing. Then we will define ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Mathematics Research Notices
سال: 2021
ISSN: ['1687-0247', '1073-7928']
DOI: https://doi.org/10.1093/imrn/rnaa390